An ARDL-Inspired Conceptual Model: Analyzing the Short- and Long-Term Dynamics of AI, Big Data, and Trust in Marketing (2025-2030)

Main Article Content

Amina lahmari
Khaled REDJEM
Doaa Shohaieb

Abstract

       This study employs a qualitative adaptation of the Autoregressive Distributed Lag (ARDL) model to examine the interrelationships between artificial intelligence (AI) adoption, big data utilization, customer trust, and global marketing performance with projections toward 2030. Using annual data from 2020-2024, the analysis reveals strong positive long-term relationships between AI/big data adoption and marketing performance, while highlighting the complex mediating role of customer trust in this ecosystem. The findings indicate that AI demonstrates the largest impact coefficient (2.71), followed by big data (1.22) and customer trust (0.89). The bounds test confirms cointegration (F-statistic = 5.90 > critical value = 4.10), establishing a long-run equilibrium relationship. Projections suggest marketing performance will reach 11.3% by 2030, with AI contributing 4.1%, big data 2.8%, and customer trust 1.5% to this growth. However, these results are constrained by the limited sample size (5 years) and require cautious interpretation.

Metrics

Metrics Loading ...

Article Details

How to Cite
Amina lahmari, Khaled REDJEM, & Doaa Shohaieb. (2025). An ARDL-Inspired Conceptual Model: Analyzing the Short- and Long-Term Dynamics of AI, Big Data, and Trust in Marketing (2025-2030). IJEP, 8(02), Pages : 251–268. https://doi.org/10.54241/2065-008-002-014
Section
Articles
Author Biographies

Amina lahmari, University Of Oum El Bouaghi (Algeria)

Researcher at  University Of Oum El Bouaghi  (Algeria)

Khaled REDJEM, University of setif 1 (Algeria)

Researcher at University of setif 1 (Algeria)

Doaa Shohaieb, Aston university (United Kingdom )

Researcher at Aston university  (United Kingdom )

References

 Aguirre, E., Mahr, D., Grewal, D., de Ruyter, K., & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of Retailing, 91(1), 34-49. https://doi.org/10.1016/j.jretai.2014.09.005

 Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705

 Aridor, G., Che, Y. K., & Salz, T. (2020). The economic consequences of data privacy regulation: Empirical evidence from GDPR. NBER Working Paper, w26900. https://doi.org/10.3386/w26900

 Berman, S. J. (2018). How digital transformation is transforming marketing. Strategy & Leadership, 46(5), 11-16. https://doi.org/10.1108/SL-08-2018-0080

 Bleier, A., Goldfarb, A., & Tucker, C. (2020). Consumer privacy and the future of data-based innovation and marketing. International Journal of Research in Marketing, 37(3), 466-480. https://doi.org/10.1016/j.ijresmar.2020.03.006

 Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., Henke, N., & Trench, M. (2018). Artificial intelligence: The next digital frontier? McKinsey Global Institute.

 Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899. https://doi.org/10.1016/j.hrmr.2022.100899

 Chui, M., Manyika, J., & Miremadi, M. (2018). What AI can and can't do (yet) for your business. McKinsey Quarterly, 1, 97-108.

 Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73-80. https://doi.org/10.1080/2573234X.2018.1543535

 Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24-42. https://doi.org/10.1007/s11747-019-00696-0

 Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.

 Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427-431. https://doi.org/10.1080/01621459.1979.10482531

 Edelman. (2020). 2020 Edelman Trust Barometer. Edelman. https://www.edelman.com/trust/2020-trust-barometer

 Edelman. (2024). 2024 Edelman Trust Barometer. Edelman. https://www.edelman.com/trust/2024-trust-barometer

 Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251-276. https://doi.org/10.2307/1913236

 Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897-904. https://doi.org/10.1016/j.jbusres.2015.07.001

 Gartner. (2023). Gartner forecasts worldwide artificial intelligence software market to reach $62 billion in 2022. Gartner. https://www.gartner.com/en/newsroom/press-releases

 Goldfarb, A., & Tucker, C. (2011). Privacy regulation and online advertising. Management Science, 57(1), 57-71. https://doi.org/10.1287/mnsc.1100.1246

 Greene, W. H. (2018). Econometric analysis (8th ed.). Pearson Education.

 Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049-1064. https://doi.org/10.1016/j.im.2016.07.004

 Hamilton, J. D. (1994). Time series analysis. Princeton University Press.

 Hoofnagle, C. J., van der Sloot, B., & Zuiderveen Borgesius, F. (2019). The European Union general data protection regulation: What it is and what it means. Information & Communications Technology Law, 28(1), 65-98. https://doi.org/10.1080/13600834.2019.1573501

 Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice (2nd ed.). OTexts.

 IDC. (2023). Worldwide global datasphere forecast, 2023-2027. International Data Corporation.

 Kannan, P. K., & Li, H. A. (2017). Digital marketing: A framework, review and research agenda. International Journal of Research in Marketing, 34(1), 22-45. https://doi.org/10.1016/j.ijresmar.2016.11.006

 Keller, K. L. (2013). Strategic brand management: Building, measuring, and managing brand equity (4th ed.). Pearson.

 Kumar, V., & Gupta, S. (2016). Conceptualizing the evolution and future of advertising. Journal of Advertising, 45(3), 302-317. https://doi.org/10.1080/00913367.2016.1199335

 Kumar, V., Venkatesan, R., & Reinartz, W. (2016). Creating enduring customer value. Journal of Marketing, 80(6), 36-68. https://doi.org/10.1509/jm.15.0414

 Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420

 Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PLoS ONE, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889

 Manyika, J., Silberg, J., & Presten, B. (2018). Notes from the AI frontier: Tackling bias in AI (and in humans). McKinsey Global Institute.

 Martin, K. D., Kim, J. J., Palmatier, R. W., Steinhoff, L., Stewart, D. W., Walker, B. A., Wang, Y., & Weaven, S. K. (2019). Data privacy in retail: Navigating tensions and directing future research. Journal of Retailing, 96(4), 449-457. https://doi.org/10.1016/j.jretai.2020.10.002

 McKinsey Global Institute. (2017). Artificial intelligence: The next digital frontier? McKinsey & Company.

 McKinsey Global Institute. (2021). The state of AI in 2021. McKinsey & Company.

 Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326. https://doi.org/10.1002/jae.616

 Politou, E., Alepis, E., & Patsakis, C. (2018). Forgetting personal data and revoking consent under the GDPR: Challenges and proposed solutions. Journal of Cybersecurity, 4(1), tyy001. https://doi.org/10.1093/cybsec/tyy001

 Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2020). Expanding AI's impact with organizational learning. MIT Sloan Management Review, 61(4), 1-17.

 Reichheld, F. F. (2003). The one number you need to grow. Harvard Business Review, 81(12), 46-55.

 Sharma, R., Mithas, S., & Kankanhalli, A. (2020). Transforming decision-making processes: A research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 29(1), 1-9. https://doi.org/10.1080/0960085X.2020.1733832

 Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In W. C. Horrace & R. C. Sickles (Eds.), Festschrift in honor of Peter Schmidt: Econometric methods and applications (pp. 281-314). Springer. https://doi.org/10.1007/978-1-4899-8008-3_9

 Statista. (2024). Digital marketing worldwide. Statista. https://www.statista.com/markets/424/topic/481/digital-marketing/

 Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How 'big data' can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. https://doi.org/10.1016/j.ijpe.2014.12.031

 Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121. https://doi.org/10.1509/jm.15.0413

 Zeithaml, V. A., Jaworski, B. J., Kohli, A. K., Tuli, K. R., Ulaga, W., & Zaltman, G. (2020). A theories-in-use approach to building marketing theory. Journal of Marketing, 84(1), 32-51. https://doi.org/10.1177/0022242919888477