Particle Swarm Optimization for Constrained Financial Portfolio Selection: An Empirical Study on the US Market
Main Article Content
Abstract
This study investigates Particle Swarm Optimization (PSO) application to portfolio optimization under realistic investment constraints. Using 48 liquid assets' market data (2019-2024), we compare PSO against classical Markowitz optimization and equal-weight benchmarks. The PSO algorithm incorporates weight limits (20%), sector concentration (40%), volatility targeting (18%), and diversification requirements. Results demonstrate PSO's superior performance with Sharpe ratio of 0.9192 versus 0.7281 for constrained Markowitz and 0.7499 for equal-weight portfolios, achieving 26.2% improvement in risk-adjusted returns.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, 74(2), 121-140. https://doi.org/10.1007/BF02592208
Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. https://doi.org/10.1016/S0305-0548(99)00074-X
Cornuejols, G., Peña, J., & Tütüncü, R. (2018). Optimization methods in finance (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781107297340
Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real World Applications, 10(4), 2396-2406. https://doi.org/10.1016/j.nonrwa.2008.04.023
DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798-812. https://doi.org/10.1287/mnsc.1080.0986
DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? The Review of Financial Studies, 22(5), 1915-1953. https://doi.org/10.1093/rfs/hhm075
Doumpos, M., & Zopounidis, C. (2020). Multi-criteria decision making for portfolio management. European Journal of Operational Research, 284(2), 650-663. https://doi.org/10.1016/j.ejor.2019.12.045
Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968
Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust portfolio optimization and management. John Wiley & Sons. https://doi.org/10.1002/9781119201823
Fan, J., Zhang, J., & Yu, K. (2012). Vast portfolio selection with gross-exposure constraints. Journal of the American Statistical Association, 107(498), 592-606. https://doi.org/10.1080/01621459.2012.682825
Frost, P. A., & Savarino, J. E. (1988). For better performance: Constrain portfolio weights. Journal of Portfolio Management, 15(1), 29-34. https://doi.org/10.3905/jpm.1988.409181
Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance, 58(4), 1651-1683. https://doi.org/10.1111/1540-6261.00580
Jobst, N. J., Horniman, M. D., Lucas, C. A., & Mitra, G. (2001). Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quantitative Finance, 1(5), 489-501. https://doi.org/10.1088/1469-7688/1/5/301
Kalayci, C. B., Ertenlice, O., & Akbay, M. A. (2019). A comprehensive review of deterministic models and applications for mean-variance portfolio optimization. Expert Systems with Applications, 125, 345-368. https://doi.org/10.1016/j.eswa.2018.12.020
Kamolsin, C., & Visutsak, P. (2024). Solving portfolio optimization problem for long-term stocks investment using ant colony optimization. In Proceedings of the 2024 9th International Conference on Intelligent Information Technology (pp. 434-438). ACM. https://doi.org/10.1145/3654522.3654602
Kaucic, M. (2019). Equity portfolio management with cardinality constraints and risk parity control using multi-objective particle swarm optimization. Computers & Operations Research, 109, 300-316. https://doi.org/10.1016/j.cor.2019.05.014
Kolm, P. N., Tütüncü, R., & Fabozzi, F. J. (2014). 60 Years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356-371. https://doi.org/10.1016/j.ejor.2013.10.060
Lwin, K., Qu, R., & Kendall, G. (2014). A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Applied Soft Computing, 24, 757-772. https://doi.org/10.1016/j.asoc.2014.08.026
Mansini, R., Ogryczak, W., & Speranza, M. G. (2003). On LP solvable models for portfolio selection. Informatica, 14(1), 37-62. https://doi.org/10.15388/Informatica.2003.003
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Merton, R. C. (1972). An analytic derivation of the efficient portfolio frontier. Journal of Financial and Quantitative Analysis, 7(4), 1851-1872. https://doi.org/10.2307/2329621
Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. https://doi.org/10.1016/j.eswa.2012.04.053
Moreira, A., & Muir, T. (2017). Volatility-managed portfolios. The Journal of Finance, 72(4), 1611-1644. https://doi.org/10.1111/jofi.12513
Qu, J., & Zhang, L. (2023). Application of maximum Sharpe ratio and minimum variance portfolio optimization for industries. Highlights in Business, Economics and Management, 5, 205-213. https://doi.org/10.54097/hbem.v5i.5077
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
Sood, S., Papasotiriou, K., Vaiciulis, M., & Balch, T. (2023). Deep reinforcement learning for optimal portfolio allocation: A comparative study with mean-variance optimization. Journal of Financial Data Science, 5(2), 45-67. https://doi.org/10.3905/jfds.2023.1.122
Zhu, H., Wang, Y., Wang, K., & Chen, Y. (2011). Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Expert Systems with Applications, 38(8), 10161-10169. https://doi.org/10.1016/j.eswa.2011.02.075