Particle Swarm Optimization for Constrained Financial Portfolio Selection: An Empirical Study on the US Market

Main Article Content

Abdallah Saib
Aboubakr Boussalem
Kadri S. Al-Shakri

Abstract

   This study investigates Particle Swarm Optimization (PSO) application to portfolio optimization under realistic investment constraints. Using 48 liquid assets' market data (2019-2024), we compare PSO against classical Markowitz optimization and equal-weight benchmarks. The PSO algorithm incorporates weight limits (20%), sector concentration (40%), volatility targeting (18%), and diversification requirements. Results demonstrate PSO's superior performance with Sharpe ratio of 0.9192 versus 0.7281 for constrained Markowitz and 0.7499 for equal-weight portfolios, achieving 26.2% improvement in risk-adjusted returns.

Metrics

Metrics Loading ...

Article Details

How to Cite
Abdallah Saib, Aboubakr Boussalem, & Kadri S. Al-Shakri. (2025). Particle Swarm Optimization for Constrained Financial Portfolio Selection: An Empirical Study on the US Market. IJEP, 8(02), Pages : 308–320. https://doi.org/10.54241/2065-008-002-018
Section
Articles
Author Biographies

Abdallah Saib, University Center El Bayadh (Algeria)

researcher at University Center El Bayadh (Algeria)

Aboubakr Boussalem, University Center El Bayadh (Algeria)

researcher at University Center El Bayadh (Algeria)

Kadri S. Al-Shakri, Ajloun National Private University (Jordan)

researcher at Ajloun National Private University (Jordan)

References

 Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, 74(2), 121-140. https://doi.org/10.1007/BF02592208

 Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. https://doi.org/10.1016/S0305-0548(99)00074-X

 Cornuejols, G., Peña, J., & Tütüncü, R. (2018). Optimization methods in finance (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781107297340

 Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real World Applications, 10(4), 2396-2406. https://doi.org/10.1016/j.nonrwa.2008.04.023

 DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798-812. https://doi.org/10.1287/mnsc.1080.0986

 DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? The Review of Financial Studies, 22(5), 1915-1953. https://doi.org/10.1093/rfs/hhm075

 Doumpos, M., & Zopounidis, C. (2020). Multi-criteria decision making for portfolio management. European Journal of Operational Research, 284(2), 650-663. https://doi.org/10.1016/j.ejor.2019.12.045

 Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968

 Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust portfolio optimization and management. John Wiley & Sons. https://doi.org/10.1002/9781119201823

 Fan, J., Zhang, J., & Yu, K. (2012). Vast portfolio selection with gross-exposure constraints. Journal of the American Statistical Association, 107(498), 592-606. https://doi.org/10.1080/01621459.2012.682825

 Frost, P. A., & Savarino, J. E. (1988). For better performance: Constrain portfolio weights. Journal of Portfolio Management, 15(1), 29-34. https://doi.org/10.3905/jpm.1988.409181

 Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance, 58(4), 1651-1683. https://doi.org/10.1111/1540-6261.00580

 Jobst, N. J., Horniman, M. D., Lucas, C. A., & Mitra, G. (2001). Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quantitative Finance, 1(5), 489-501. https://doi.org/10.1088/1469-7688/1/5/301

 Kalayci, C. B., Ertenlice, O., & Akbay, M. A. (2019). A comprehensive review of deterministic models and applications for mean-variance portfolio optimization. Expert Systems with Applications, 125, 345-368. https://doi.org/10.1016/j.eswa.2018.12.020

 Kamolsin, C., & Visutsak, P. (2024). Solving portfolio optimization problem for long-term stocks investment using ant colony optimization. In Proceedings of the 2024 9th International Conference on Intelligent Information Technology (pp. 434-438). ACM. https://doi.org/10.1145/3654522.3654602

 Kaucic, M. (2019). Equity portfolio management with cardinality constraints and risk parity control using multi-objective particle swarm optimization. Computers & Operations Research, 109, 300-316. https://doi.org/10.1016/j.cor.2019.05.014

 Kolm, P. N., Tütüncü, R., & Fabozzi, F. J. (2014). 60 Years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356-371. https://doi.org/10.1016/j.ejor.2013.10.060

 Lwin, K., Qu, R., & Kendall, G. (2014). A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Applied Soft Computing, 24, 757-772. https://doi.org/10.1016/j.asoc.2014.08.026

 Mansini, R., Ogryczak, W., & Speranza, M. G. (2003). On LP solvable models for portfolio selection. Informatica, 14(1), 37-62. https://doi.org/10.15388/Informatica.2003.003

 Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

 Merton, R. C. (1972). An analytic derivation of the efficient portfolio frontier. Journal of Financial and Quantitative Analysis, 7(4), 1851-1872. https://doi.org/10.2307/2329621

 Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. https://doi.org/10.1016/j.eswa.2012.04.053

 Moreira, A., & Muir, T. (2017). Volatility-managed portfolios. The Journal of Finance, 72(4), 1611-1644. https://doi.org/10.1111/jofi.12513

 Qu, J., & Zhang, L. (2023). Application of maximum Sharpe ratio and minimum variance portfolio optimization for industries. Highlights in Business, Economics and Management, 5, 205-213. https://doi.org/10.54097/hbem.v5i.5077

 Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

 Sood, S., Papasotiriou, K., Vaiciulis, M., & Balch, T. (2023). Deep reinforcement learning for optimal portfolio allocation: A comparative study with mean-variance optimization. Journal of Financial Data Science, 5(2), 45-67. https://doi.org/10.3905/jfds.2023.1.122

 Zhu, H., Wang, Y., Wang, K., & Chen, Y. (2011). Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Expert Systems with Applications, 38(8), 10161-10169. https://doi.org/10.1016/j.eswa.2011.02.075